

Welcome to Brewtils’s documentation!

Contents:

	Brewtils
	Features

	Installation

	Quick Start

	Documentation

	Installation
	Stable release

	From sources

	Usage

	Brewtils
	Features

	Installation

	Quick Start

	Documentation

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Leads

	Contributors

	Brewtils Changelog
	2.4.2

	2.4.1

	2.4.0

	2.3.7

	2.3.6

	2.3.5

	2.3.4

	2.3.3

	2.3.2

	2.3.1

	2.3.0

	2.2.1

	2.2.0

	2.1.1

Brewtils

Brewtils is the Python library for interfacing with Beergarden systems. If you are planning on
writing beer-garden plugins, this is the correct library for you. In addition to writing plugins,
it provides simple ways to query the API and is officially supported by the beer-garden team.

[image: Gitter] [https://gitter.im/beer-garden-io/Lobby] [image: PyPI] [https://pypi.python.org/pypi/brewtils] [image: Build Status] [https://travis-ci.org/beer-garden/brewtils?branch=master] [image: Code Coverage] [https://codecov.io/gh/beer-garden/brewtils] [image: Documentation Status] [https://brewtils.readthedocs.io/en/latest/?badge=latest] [image: Pyup Updates] [https://pyup.io/repos/github/beer-garden/brewtils/]

Features

Brewtils helps you interact with beer-garden.

	Easy way to create beer-garden plugins

	Full support of the entire Beer-Garden API

	Officially supported by the beer-garden team

Installation

To install brewtils, run this command in your terminal:

$ pip install brewtils

Or add it to your requirements.txt

$ cat brewtils >> requirements.txt
$ pip install -r requirements.txt

Quick Start

You can create your own beer-garden plugins without much problem at all. To start, we’ll create
the obligatory hello-world plugin. Creating a plugin is as simple as:

from brewtils.decorators import system, parameter, command
from brewtils.plugin import RemotePlugin

@system
class HelloWorld(object):

 @parameter(key="message", description="The message to echo", type="String")
 def say_hello(self, message="World!"):
 print("Hello, %s!" % message)
 return "Hello, %s!" % message

if __name__ == "__main__":
 client = HelloWorld()
 plugin = RemotePlugin(client,
 name="hello",
 version="0.0.1",
 bg_host='127.0.0.1',
 bg_port=2337)
 plugin.run()

Assuming you have a Beer Garden running on port 2337 on localhost, running this will register and
start your plugin! You now have your first plugin running in beer-garden. Let’s use another part
of the brewtils library to exercise your plugin from python.

The SystemClient is designed to help you interact with registered Systems as if they were native
Python objects.

from brewtils.rest.system_client import SystemClient

hello_client = SystemClient('localhost', 2337, 'hello')

request = hello_client.say_hello(message="from system client")

print(request.status) # 'SUCCESS'
print(request.output) # Hello, from system client!

In the background, the SystemClient has executed an HTTP POST with the payload required to get
beer-garden to execute your command. The SystemClient is how most people interact with
beer-garden when they are in the context of python and want to be making requests.

Of course, the rest of the API is accessible through the brewtils package. The EasyClient
provides simple convenient methods to call the API and auto-serialize the responses. Suppose you
want to get a list of all the commands on all systems:

from brewtils.rest.easy_client import EasyClient

client = EasyClient('localhost', 2337)

systems = client.find_systems()

for system in systems:
 for command in system.commands:
 print(command.name)

This is just a small taste of what is possible with the EasyClient. Feel free to explore all the
methods that are exposed.

For more detailed information and better walkthroughs, checkout the full documentation!

Documentation

	Full Beer Garden documentation is available at https://beer-garden.io

	Brewtils Documentation is available at https://brewtils.readthedocs.io

Installation

Stable release

To install Brewtils, run this command in your terminal:

$ pip install brewtils

This is the preferred method to install Brewtils, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Brewtils can be downloaded from the Github repo [https://github.com/beer-garden/brewtils].

You can either clone the public repository:

$ git clone git@github.com/beer-garden/brewtils.git

Or download the tarball [https://github.com/beer-garden/brewtils/tarball/master]:

$ curl -OL https://github.com/beer-garden/brewtils/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

Brewtils

Brewtils is the Python library for interfacing with Beergarden systems. If you are planning on
writing beer-garden plugins, this is the correct library for you. In addition to writing plugins,
it provides simple ways to query the API and is officially supported by the beer-garden team.

[image: Gitter] [https://gitter.im/beer-garden-io/Lobby] [image: PyPI] [https://pypi.python.org/pypi/brewtils] [image: Build Status] [https://travis-ci.org/beer-garden/brewtils?branch=master] [image: Code Coverage] [https://codecov.io/gh/beer-garden/brewtils] [image: Documentation Status] [https://brewtils.readthedocs.io/en/latest/?badge=latest] [image: Pyup Updates] [https://pyup.io/repos/github/beer-garden/brewtils/]

Features

Brewtils helps you interact with beer-garden.

	Easy way to create beer-garden plugins

	Full support of the entire Beer-Garden API

	Officially supported by the beer-garden team

Installation

To install brewtils, run this command in your terminal:

$ pip install brewtils

Or add it to your requirements.txt

$ cat brewtils >> requirements.txt
$ pip install -r requirements.txt

Quick Start

You can create your own beer-garden plugins without much problem at all. To start, we’ll create
the obligatory hello-world plugin. Creating a plugin is as simple as:

from brewtils.decorators import system, parameter, command
from brewtils.plugin import RemotePlugin

@system
class HelloWorld(object):

 @parameter(key="message", description="The message to echo", type="String")
 def say_hello(self, message="World!"):
 print("Hello, %s!" % message)
 return "Hello, %s!" % message

if __name__ == "__main__":
 client = HelloWorld()
 plugin = RemotePlugin(client,
 name="hello",
 version="0.0.1",
 bg_host='127.0.0.1',
 bg_port=2337)
 plugin.run()

Assuming you have a Beer Garden running on port 2337 on localhost, running this will register and
start your plugin! You now have your first plugin running in beer-garden. Let’s use another part
of the brewtils library to exercise your plugin from python.

The SystemClient is designed to help you interact with registered Systems as if they were native
Python objects.

from brewtils.rest.system_client import SystemClient

hello_client = SystemClient('localhost', 2337, 'hello')

request = hello_client.say_hello(message="from system client")

print(request.status) # 'SUCCESS'
print(request.output) # Hello, from system client!

In the background, the SystemClient has executed an HTTP POST with the payload required to get
beer-garden to execute your command. The SystemClient is how most people interact with
beer-garden when they are in the context of python and want to be making requests.

Of course, the rest of the API is accessible through the brewtils package. The EasyClient
provides simple convenient methods to call the API and auto-serialize the responses. Suppose you
want to get a list of all the commands on all systems:

from brewtils.rest.easy_client import EasyClient

client = EasyClient('localhost', 2337)

systems = client.find_systems()

for system in systems:
 for command in system.commands:
 print(command.name)

This is just a small taste of what is possible with the EasyClient. Feel free to explore all the
methods that are exposed.

For more detailed information and better walkthroughs, checkout the full documentation!

Documentation

	Full Beer Garden documentation is available at https://beer-garden.io

	Brewtils Documentation is available at https://brewtils.readthedocs.io

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/beer-garden/brewtils/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Brewtils could always use more documentation, whether as part of the
official Brewtils docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/beer-garden/brewtils/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up brewtils for local development.

	Fork the brewtils repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/brewtils.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv brewtils
$ cd brewtils/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 brewtils test
$ nosetests
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.5, and 3.6. Check
https://travis-ci.org/beer-garden/brewtils/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ nosetests test/models_test.py:SystemTest.test_instance_names

Credits

Development Leads

	Logan Asher Jones <loganasherjones@gmail.com>

	Matt Patrick

Contributors

None yet. Why not be the first?

Brewtils Changelog

2.4.2

Date: 10/7/18

New Features

	Ability to specify a timeout for Beergarden communication (beer-garden/#87)

	parameters decorator for cleaner command definitions (beer-garden/#82)

Bug Fixes

	Fixed error when republishing a message to RabbitMQ (beer-garden/#88)

2.4.1

Date: 09/11/18

Other Changes

	Changed Plugin warning type so it won’t be displayed by default

2.4.0

Date: 09/5/18

New Features

	Added job scheduling capability (beer-garden/#10)

	Added support for authentication / users (beer-garden/#35)

	Plugins will load log level from the environment (bartender/#4)

	RestClient now exposes base_url (#58)

	SystemClient can wait for a request to complete instead of polling (#54)

	Allowing custom argument parser when loading configuration (#67)

	Support for TLS connections to RabbitMQ (#74)

	Warning for future change to plugin max_concurrent default value (#79)

	Added methods get_config to RestClient, can_connect to EasyClient

Other Changes

	Renamed PluginBase to Plugin (old name is aliased)

2.3.7

Date: 07/11/18

New Features

	Current request can be accessed using self._current_request (beer-garden/#78)

Bug Fixes

	Updating import problem from lark-parser #61

	Pinning setup.py versions to prevent future breaks

2.3.6

Date: 06/06/18

Other Changes

	Added has_parent to request model

2.3.5

Date: 4/17/18

Bug Fixes

	Using simplejson package to fix JSON parsing issue in Python 3.4 & 3.5 (#48, #49)

2.3.4

Date: 4/5/18

New Features

	Python 3.4 is now supported (#43)

	Now using Yapconf [https://github.com/loganasherjones/yapconf] for configuration parsing (#34)

	Parameter types can now be specified as native Python types (#29)

	Added flag to raise an exception if a request created with SystemClient completes with an ‘ERROR’ status (#28)

Other Changes

	All exceptions now inherit from BrewtilsException (#45)

	Removed references to Brewmaster exception classes (#44)

	Requests with JSON command_type are smarter about formatting exceptions (#27)

	Decorators, RemotePlugin, and SystemClient can now be imported directly from the brewtils package

2.3.3

Date: 3/20/18

Bug Fixes

	Fixed bug where request updating could retry forever (#39)

2.3.2

Date: 3/7/18

Bug Fixes

	Fixed issue with multi-instance remote plugins failing to initialize (#35)

2.3.1

Date: 2/22/18

New Features

	Added description keyword argument to @command decorator

2.3.0

Date: 1/26/18

New Features

	Added methods for interacting with the Queue API to RestClient and EasyClient

	Clients and Plugins can now be configured to skip server certificate verification when making HTTPS requests

	Timestamps now have true millisecond precision on platforms that support it

	Added form_input_type to Parameter model

	Plugins can now be stopped correctly by calling their _stop method

	Added Event model

Bug Fixes

	Plugins now additionally look for ca_cert and client_cert in BG_CA_CERT and BG_CLIENT_CERT

Other Changes

	Better data integrity by only allowing certain Request status transitions

2.2.1

Date: 1/11/18

Bug Fixes

	Nested requests that reference a different beer-garden no longer fail

2.2.0

Date: 10/23/17

New Features

	Command descriptions can now be changed without updating the System version

	Standardized Remote Plugin logging configuration

	Added domain-specific language for dynamic choices configuration

	Added metadata field to Instance model

Bug Fixes

	Removed some default values from model __init__ functions

	System descriptors (description, display name, icon name, metadata) now always updated during startup

	Requests with output type ‘JSON’ will now have JSON error messages

Other changes

	Added license file

2.1.1

Date: 8/25/17

New Features

	Added updated_at field to Request model

	SystemClient now allows specifying a client_cert

	RestClient now reuses the same session for subsequent connections

	SystemClient can now make non-blocking requests

	RestClient and EasyClient now support PATCHing a System

Deprecations / Removals

	multithreaded argument to PluginBase has been superseded by max_concurrent

	These decorators are now deprecated
- @command_registrar, instead use @system
- @plugin_param, instead use @parameter
- @register, instead use @command

	These classes are now deprecated
- BrewmasterSchemaParser, instead use SchemaParser
- BrewmasterRestClient, instead use RestClient
- BrewmasterEasyClient, instead use EasyClient
- BrewmasterSystemClient, instead use SystemClient

Bug Fixes

	Reworked message processing to remove the possibility of a failed request being stuck in IN_PROGRESS

	Correctly handle custom form definitions with a top-level array

	Smarter reconnect logic when the RabbitMQ connection fails

Other changes

	Removed dependency on pyopenssl so there’s need to compile any Python extensions

	Request processing now occurs inside of a ThreadPoolExecutor thread

	Better serialization handling for epoch fields

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 brewtils	

 	
 	
 brewtils.log	

 	
 	
 brewtils.rest	

 	
 	
 brewtils.rest.client	

 	
 	
 brewtils.rest.easy_client	

 	
 	
 brewtils.rest.system_client	

Index

 B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | L
 | N
 | P
 | R
 | S
 | T
 | U
 | W

B

 	
 	BrewmasterEasyClient (class in brewtils.rest.easy_client)

 	BrewmasterRestClient (class in brewtils.rest.client)

 	BrewmasterSystemClient (class in brewtils.rest.system_client)

 	brewtils.log (module)

 	
 	brewtils.rest (module)

 	brewtils.rest.client (module)

 	brewtils.rest.easy_client (module)

 	brewtils.rest.system_client (module)

C

 	
 	can_connect() (brewtils.rest.easy_client.EasyClient method)

 	clear_all_queues() (brewtils.rest.easy_client.EasyClient method)

 	clear_queue() (brewtils.rest.easy_client.EasyClient method)

 	convert_logging_config() (in module brewtils.log)

 	
 	create_bg_request() (brewtils.rest.system_client.SystemClient method)

 	create_job() (brewtils.rest.easy_client.EasyClient method)

 	create_request() (brewtils.rest.easy_client.EasyClient method)

 	create_system() (brewtils.rest.easy_client.EasyClient method)

D

 	
 	delete_job() (brewtils.rest.client.RestClient method)

 	delete_queue() (brewtils.rest.client.RestClient method)

 	
 	delete_queues() (brewtils.rest.client.RestClient method)

 	delete_system() (brewtils.rest.client.RestClient method)

E

 	
 	EasyClient (class in brewtils.rest.easy_client)

 	
 	enable_auth() (in module brewtils.rest.client)

F

 	
 	find_jobs() (brewtils.rest.easy_client.EasyClient method)

 	find_requests() (brewtils.rest.easy_client.EasyClient method)

 	
 	find_systems() (brewtils.rest.easy_client.EasyClient method)

 	find_unique_request() (brewtils.rest.easy_client.EasyClient method)

 	find_unique_system() (brewtils.rest.easy_client.EasyClient method)

G

 	
 	get_command() (brewtils.rest.client.RestClient method)

 	get_commands() (brewtils.rest.client.RestClient method)

 	get_config() (brewtils.rest.client.RestClient method)

 	get_job() (brewtils.rest.client.RestClient method)

 	get_jobs() (brewtils.rest.client.RestClient method)

 	get_logging_config() (brewtils.rest.client.RestClient method)

 	(brewtils.rest.easy_client.EasyClient method)

 	get_python_logging_config() (in module brewtils.log)

 	get_queues() (brewtils.rest.client.RestClient method)

 	(brewtils.rest.easy_client.EasyClient method)

 	
 	get_request() (brewtils.rest.client.RestClient method)

 	get_requests() (brewtils.rest.client.RestClient method)

 	get_system() (brewtils.rest.client.RestClient method)

 	get_systems() (brewtils.rest.client.RestClient method)

 	get_tokens() (brewtils.rest.client.RestClient method)

 	get_user() (brewtils.rest.client.RestClient method)

 	(brewtils.rest.easy_client.EasyClient method)

 	get_version() (brewtils.rest.client.RestClient method)

 	(brewtils.rest.easy_client.EasyClient method)

I

 	
 	initialize_instance() (brewtils.rest.easy_client.EasyClient method)

 	
 	instance_heartbeat() (brewtils.rest.easy_client.EasyClient method)

J

 	
 	JSON_HEADERS (brewtils.rest.client.RestClient attribute)

L

 	
 	LATEST_VERSION (brewtils.rest.client.RestClient attribute)

 	
 	load_bg_system() (brewtils.rest.system_client.SystemClient method)

N

 	
 	normalize_url_prefix() (in module brewtils.rest)

P

 	
 	patch_instance() (brewtils.rest.client.RestClient method)

 	patch_job() (brewtils.rest.client.RestClient method)

 	patch_request() (brewtils.rest.client.RestClient method)

 	patch_system() (brewtils.rest.client.RestClient method)

 	pause_job() (brewtils.rest.easy_client.EasyClient method)

 	
 	post_event() (brewtils.rest.client.RestClient method)

 	post_jobs() (brewtils.rest.client.RestClient method)

 	post_requests() (brewtils.rest.client.RestClient method)

 	post_systems() (brewtils.rest.client.RestClient method)

 	publish_event() (brewtils.rest.easy_client.EasyClient method)

R

 	
 	refresh() (brewtils.rest.client.RestClient method)

 	remove_job() (brewtils.rest.easy_client.EasyClient method)

 	
 	remove_system() (brewtils.rest.easy_client.EasyClient method)

 	RestClient (class in brewtils.rest.client)

 	resume_job() (brewtils.rest.easy_client.EasyClient method)

S

 	
 	send() (brewtils.rest.client.TimeoutAdapter method)

 	send_bg_request() (brewtils.rest.system_client.SystemClient method)

 	
 	setup_logger() (in module brewtils.log)

 	SystemClient (class in brewtils.rest.system_client)

T

 	
 	TimeoutAdapter (class in brewtils.rest.client)

U

 	
 	update_instance_status() (brewtils.rest.easy_client.EasyClient method)

 	
 	update_request() (brewtils.rest.easy_client.EasyClient method)

 	update_system() (brewtils.rest.easy_client.EasyClient method)

W

 	
 	who_am_i() (brewtils.rest.easy_client.EasyClient method)

brewtils.log package

Module contents

Brewtils Logging Utilities

This module is for setting up your plugins logging correctly.

Example

In order to use this, you should simply call setup_logger in the same
file where you initialize your plugin sometime before you initialize your
Plugin object.

host = 'localhost'
port = 2337
ssl_enabled = False
system_name = 'my_system'

setup_logger(
 bg_host=host,
 bg_port=port,
 system_name=system_name,
 ssl_enabled=ssl_enabled
)
plugin = Plugin(
 my_client,
 bg_host=host,
 bg_port=port,
 ssl_enabled=ssl_enabled,
 name=system_name,
 version="0.0.1"
)
plugin.run()

	
brewtils.log.convert_logging_config(logging_config)

	Transform a LoggingConfig object into a Python logging configuration

	Parameters

	logging_config – Beergarden logging config

	Returns

	The logging configuration

	Return type

	dict

	
brewtils.log.get_python_logging_config(bg_host, bg_port, system_name, ca_cert=None, client_cert=None, ssl_enabled=None)

	Get Beergarden’s logging configuration

	Parameters

	
	bg_host (str) – Beergarden host

	bg_port (int) – Beergarden port

	system_name (str) – Name of the system

	ca_cert (str) – Path to CA certificate file

	client_cert (str) – Path to client certificate file

	ssl_enabled (bool) – Use SSL when connection to Beergarden

	Returns

	The logging configuration for the specified system

	Return type

	dict

	
brewtils.log.setup_logger(bg_host, bg_port, system_name, ca_cert=None, client_cert=None, ssl_enabled=None)

	Sets Python logging to use configuration from Beergarden API

This method will overwrite the current logging configuration.

	Parameters

	
	bg_host (str) – Beergarden host

	bg_port (int) – Beergarden port

	system_name (str) – Name of the system

	ca_cert (str) – Path to CA certificate file

	client_cert (str) – Path to client certificate file

	ssl_enabled (bool) – Use SSL when connection to Beergarden

Returns: None

brewtils.rest package

Submodules

brewtils.rest.client module

	
class brewtils.rest.client.BrewmasterRestClient(*args, **kwargs)

	Bases: brewtils.rest.client.RestClient

	
class brewtils.rest.client.RestClient(bg_host=None, bg_port=None, ssl_enabled=False, api_version=None, logger=None, ca_cert=None, client_cert=None, url_prefix=None, ca_verify=True, **kwargs)

	Bases: object

Simple Rest Client for communicating to with beer-garden.

The is the low-level client responsible for making the actual REST calls. Other clients
(e.g. brewtils.rest.easy_client.EasyClient) build on this by providing useful
abstractions.

	Parameters

	
	bg_host – beer-garden REST API hostname.

	bg_port – beer-garden REST API port.

	ssl_enabled – Flag indicating whether to use HTTPS when communicating with beer-garden.

	api_version – The beer-garden REST API version. Will default to the latest version.

	logger – The logger to use. If None one will be created.

	ca_cert – beer-garden REST API server CA certificate.

	client_cert – The client certificate to use when making requests.

	url_prefix – beer-garden REST API Url Prefix.

	ca_verify – Flag indicating whether to verify server certificate when making a request.

	username – Username for Beergarden authentication

	password – Password for Beergarden authentication

	access_token – Access token for Beergarden authentication

	refresh_token – Refresh token for Beergarden authentication

	client_timeout – Max time to will wait for server response

	
JSON_HEADERS = {'Accept': 'text/plain', 'Content-type': 'application/json'}

	

	
LATEST_VERSION = 1

	

	
delete_job(*args, **kwargs)

	Performs a DELETE on a Job URL

	Parameters

	job_id – The ID of the job to remove

	Returns

	Response to the request

	
delete_queue(*args, **kwargs)

	Performs a DELETE on a specific Queue URL

	Returns

	Response to the request

	
delete_queues(*args, **kwargs)

	Performs a DELETE on the Queues URL

	Returns

	Response to the request

	
delete_system(*args, **kwargs)

	Performs a DELETE on a System URL

	Parameters

	system_id – The ID of the system to remove

	Returns

	Response to the request

	
get_command(*args, **kwargs)

	Performs a GET on the Command URL

	Parameters

	command_id – ID of command

	Returns

	Response to the request

	
get_commands(*args, **kwargs)

	Performs a GET on the Commands URL

	
get_config(*args, **kwargs)

	Perform a GET to the config URL

	Parameters

	kwargs – Passed to underlying Requests method

	Returns

	The request response

	
get_job(*args, **kwargs)

	Performs a GET on the Job URL

	Parameters

	job_id – ID of job

	Returns

	Response to the request

	
get_jobs(*args, **kwargs)

	Performs a GET on the Jobs URL.

Returns: Response to the request

	
get_logging_config(*args, **kwargs)

	Perform a GET to the logging config URL

	Parameters

	kwargs – Parameters to be used in the GET request

	Returns

	The request response

	
get_queues(*args, **kwargs)

	Performs a GET on the Queues URL

	Returns

	Response to the request

	
get_request(*args, **kwargs)

	Performs a GET on the Request URL

	Parameters

	request_id – ID of request

	Returns

	Response to the request

	
get_requests(*args, **kwargs)

	Performs a GET on the Requests URL

	Parameters

	kwargs – Parameters to be used in the GET request

	Returns

	Response to the request

	
get_system(*args, **kwargs)

	Performs a GET on the System URL

	Parameters

	
	system_id – ID of system

	kwargs – Parameters to be used in the GET request

	Returns

	Response to the request

	
get_systems(*args, **kwargs)

	Perform a GET on the System collection URL

	Parameters

	kwargs – Parameters to be used in the GET request

	Returns

	The request response

	
get_tokens(username=None, password=None)

	Use a username and password to get access and refresh tokens

	Parameters

	
	username – Beergarden username

	password – Beergarden password

	Returns

	Response object

	
get_user(*args, **kwargs)

	Performs a GET on the specific User URL

	Returns

	Response to the request

	Parameters

	user_identifier – ID or username of User

	
get_version(*args, **kwargs)

	Perform a GET to the version URL

	Parameters

	kwargs – Parameters to be used in the GET request

	Returns

	The request response

	
patch_instance(*args, **kwargs)

	Performs a PATCH on the instance URL

	Parameters

	
	instance_id – ID of instance

	payload – The update specification

	Returns

	Response

	
patch_job(*args, **kwargs)

	Performs a PATCH on the Job URL

	Parameters

	
	job_id – ID of request

	payload – New job definition

	Returns

	Response to the request

	
patch_request(*args, **kwargs)

	Performs a PATCH on the Request URL

	Parameters

	
	request_id – ID of request

	payload – New request definition

	Returns

	Response to the request

	
patch_system(*args, **kwargs)

	Performs a PATCH on a System URL

	Parameters

	
	system_id – ID of system

	payload – The update specification

	Returns

	Response

	
post_event(*args, **kwargs)

	Performs a POST on the event URL

	Parameters

	
	payload – New event definition

	publishers – Array of publishers to use

	Returns

	Response to the request

	
post_jobs(*args, **kwargs)

	Performs a POST on the Job URL

	Parameters

	payload – New job definition

	Returns

	Response to the request

	
post_requests(*args, **kwargs)

	Performs a POST on the Request URL

	Parameters

	
	payload – New request definition

	kwargs – Extra request parameters

	Keyword Arguments

	
	blocking – Wait for request to complete

	timeout – Maximum seconds to wait

	Returns

	Response to the request

	
post_systems(*args, **kwargs)

	Performs a POST on the System URL

	Parameters

	payload – New request definition

	Returns

	Response to the request

	
refresh(refresh_token=None)

	Use a refresh token to obtain a new access token

	Parameters

	refresh_token – Refresh token to use

	Returns

	Response object

	
class brewtils.rest.client.TimeoutAdapter(**kwargs)

	Bases: requests.adapters.HTTPAdapter

Transport adapter with a default request timeout

	
send(*args, **kwargs)

	Sends PreparedRequest object. Returns Response object.

	Parameters

	
	request – The PreparedRequest being sent.

	stream – (optional) Whether to stream the request content.

	timeout (float or tuple or urllib3 Timeout object) – (optional) How long to wait for the server to send
data before giving up, as a float, or a (connect timeout,
read timeout) tuple.

	verify – (optional) Either a boolean, in which case it controls whether
we verify the server’s TLS certificate, or a string, in which case it
must be a path to a CA bundle to use

	cert – (optional) Any user-provided SSL certificate to be trusted.

	proxies – (optional) The proxies dictionary to apply to the request.

	Return type

	requests.Response

	
brewtils.rest.client.enable_auth(method)

	Decorate methods with this to enable using authentication

brewtils.rest.easy_client module

	
class brewtils.rest.easy_client.BrewmasterEasyClient(*args, **kwargs)

	Bases: brewtils.rest.easy_client.EasyClient

	
class brewtils.rest.easy_client.EasyClient(bg_host=None, bg_port=None, ssl_enabled=False, api_version=None, ca_cert=None, client_cert=None, parser=None, logger=None, url_prefix=None, ca_verify=True, **kwargs)

	Bases: object

Client for communicating with beer-garden

This class provides nice wrappers around the functionality provided by a
brewtils.rest.client.RestClient

	Parameters

	
	bg_host – beer-garden REST API hostname.

	bg_port – beer-garden REST API port.

	ssl_enabled – Flag indicating whether to use HTTPS when communicating with beer-garden.

	api_version – The beer-garden REST API version. Will default to the latest version.

	ca_cert – beer-garden REST API server CA certificate.

	client_cert – The client certificate to use when making requests.

	parser – The parser to use. If None will default to an instance of SchemaParser.

	logger – The logger to use. If None one will be created.

	url_prefix – beer-garden REST API URL Prefix.

	ca_verify – Flag indicating whether to verify server certificate when making a request.

	username – Username for Beergarden authentication

	password – Password for Beergarden authentication

	access_token – Access token for Beergarden authentication

	refresh_token – Refresh token for Beergarden authentication

	client_timeout – Max time to will wait for server response

	
can_connect(**kwargs)

	Determine if the Beergarden server is responding.

	Kwargs:

	Arguments passed to the underlying Requests method

	Returns

	A bool indicating if the connection attempt was successful. Will
return False only if a ConnectionError is raised during the attempt.
Any other exception will be re-raised.

	Raises

	requests.exceptions.RequestException – The connection attempt resulted in an exception that indicates
something other than a basic connection error. For example,
an error with certificate verification.

	
clear_all_queues()

	Cancel and clear all messages from all queues

	Returns

	The response

	
clear_queue(queue_name)

	Cancel and clear all messages from a queue

	Returns

	The response

	
create_job(job)

	Create a new job by POSTing

	Parameters

	job – The job to create

	Returns

	The job creation response.

	
create_request(request, **kwargs)

	Create a new request by POSTing

	Parameters

	
	request – New request definition

	kwargs – Extra request parameters

	Keyword Arguments

	
	blocking – Wait for request to complete

	timeout – Maximum seconds to wait

	Returns

	Response to the request

	
create_system(system)

	Create a new system by POSTing

	Parameters

	system – The system to create

	Returns

	The system creation response

	
find_jobs(**kwargs)

	Find jobs using keyword arguments as search parameters

	Parameters

	**kwargs – Search parameters

	Returns

	List of jobs.

	
find_requests(**kwargs)

	Find requests using keyword arguments as search parameters

	Parameters

	kwargs – Search parameters

	Returns

	A list of request instances satisfying the given search parameters

	
find_systems(**kwargs)

	Find systems using keyword arguments as search parameters

	Parameters

	kwargs – Search parameters

	Returns

	A list of system instances satisfying the given search parameters

	
find_unique_request(**kwargs)

	Find a unique request using keyword arguments as search parameters

Note

If ‘id’ is present in kwargs then all other parameters will be ignored.

	Parameters

	kwargs – Search parameters

	Returns

	One request instance

	
find_unique_system(**kwargs)

	Find a unique system using keyword arguments as search parameters

	Parameters

	kwargs – Search parameters

	Returns

	One system instance

	
get_logging_config(system_name)

	Get the logging configuration for a particular system.

	Parameters

	system_name – Name of system

	Returns

	LoggingConfig object

	
get_queues()

	Retrieve all queue information

	Returns

	The response

	
get_user(user_identifier)

	Find a specific user using username or ID

	Parameters

	user_identifier – ID or username of User

	Returns

	A User

	
get_version(**kwargs)

	

	
initialize_instance(instance_id)

	Start an instance by PATCHing

	Parameters

	instance_id – The ID of the instance to start

	Returns

	The start response

	
instance_heartbeat(instance_id)

	Send heartbeat for health and status

	Parameters

	instance_id – The ID of the instance

	Returns

	The response

	
pause_job(job_id)

	Pause a Job by ID.

	Parameters

	job_id – The ID of the job to pause.

	Returns

	A copy of the job.

	
publish_event(*args, **kwargs)

	Publish a new event by POSTing

	Parameters

	
	args – The Event to create

	_publishers – Optional list of specific publishers. If None all publishers will be
used.

	kwargs – If no Event is given in the *args, on will be constructed from the kwargs

	Returns

	The response

	
remove_job(job_id)

	Remove a job by ID.

	Parameters

	job_id – The ID of the job to remove.

	Returns

	True if successful, raises an error otherwise.

	
remove_system(**kwargs)

	Remove a specific system by DELETEing, using keyword arguments as search parameters

	Parameters

	kwargs – Search parameters

	Returns

	The response

	
resume_job(job_id)

	Resume a job by ID.

	Parameters

	job_id – The ID of the job to resume.

	Returns

	A copy of the job.

	
update_instance_status(instance_id, new_status)

	Update an instance by PATCHing

	Parameters

	
	instance_id – The ID of the instance to start

	new_status – The updated status

	Returns

	The start response

	
update_request(request_id, status=None, output=None, error_class=None)

	Set various fields on a request by PATCHing

	Parameters

	
	request_id – The ID of the request to update

	status – The new status

	output – The new output

	error_class – The new error class

	Returns

	The response

	
update_system(system_id, new_commands=None, **kwargs)

	Update a system by PATCHing

	Parameters

	
	system_id – The ID of the system to update

	new_commands – The new commands

	Keyword Arguments

	
	metadata (dict) The updated metadata for the system

	description (str) The updated description for the system

	display_name (str) The updated display_name for the system

	icon_name (str) The updated icon_name for the system

	Returns

	The response

	
who_am_i()

	Find the user represented by the current set of credentials

	Returns

	The current user

brewtils.rest.system_client module

	
class brewtils.rest.system_client.BrewmasterSystemClient(*args, **kwargs)

	Bases: brewtils.rest.system_client.SystemClient

	
class brewtils.rest.system_client.SystemClient(bg_host=None, bg_port=None, system_name=None, version_constraint='latest', default_instance='default', always_update=False, timeout=None, max_delay=30, api_version=None, ssl_enabled=False, ca_cert=None, blocking=True, max_concurrent=None, client_cert=None, url_prefix=None, ca_verify=True, raise_on_error=False, **kwargs)

	Bases: object

High-level client for generating requests for a beer-garden System.

	SystemClient creation:

	This class is intended to be the main way to create beer-garden requests. Create an
instance with beer-garden connection information (optionally including a url_prefix) and
a system name:

client = SystemClient(host, port, 'example_system', ssl_enabled=True, url_prefix=None)

Pass additional keyword arguments for more granularity:

	version_constraint:

	Allows specifying a particular system version. Can be a version literal (‘1.0.0’)
or the special value ‘latest.’ Using ‘latest’ will allow the the SystemClient to
retry a request if it fails due to a missing system (see Creating Requests).

	default_instance:

	The instance name to use when creating a request if no other instance name is
specified. Since each request must be addressed to a specific instance this is a
convenience to prevent needing to specify the ‘default’ instance for each request.

	always_update:

	Always attempt to reload the system definition before making a request. This is
useful to ensure Requests are always made against the latest version of the system.
If not set the System definition will be loaded once (upon making the first
request) and then only reloaded if a Request fails.

	Loading the System:

	The System definition is lazily loaded, so nothing happens until the first attempt to send
a Request. At that point the SystemClient will query beer-garden to get a system definition
that matches the system_name and version_constraint. If no matching system can be found a
FetchError will be raised. If always_update was set to True this will happen
before making each request, not just the first.

	Making a Request:

	The standard way to create and send requests is by calling object attributes:

request = client.example_command(param_1='example_param')

In the normal case this will block until the request completes. Request completion is
determined by periodically polling beer-garden to check the Request status. The time
between polling requests starts at 0.5s and doubles each time the request has still not
completed, up to max_delay. If a timeout was specified and the Request has not completed
within that time a ConnectionTimeoutError will be raised.

It is also possible to create the SystemClient in non-blocking mode by specifying
blocking=False. In this case the request creation will immediately return a Future and
will spawn a separate thread to poll for Request completion. The max_concurrent parameter
is used to control the maximum threads available for polling.

Create a SystemClient with blocking=False
client = SystemClient(host, port, 'example_system', ssl_enabled=True, blocking=False)

Create and send 5 requests without waiting for request completion
futures = [client.example_command(param_1=number) for number in range(5)]

Now wait on all requests to complete
concurrent.futures.wait(futures)

If the request creation process fails (e.g. the command failed validation) and
version_constraint is ‘latest’ then the SystemClient will check to see if a different
version is available, and if so it will attempt to make the request on that version.
This is so users of the SystemClient that don’t necessarily care about the target system
version don’t need to be restarted if the target system is updated.

	Tweaking beer-garden Request Parameters:

	There are several parameters that control how beer-garden routes / processes a request. To
denote these as intended for beer-garden itself (rather than a parameter to be passed to
the Plugin) prepend a leading underscore to the argument name.

Sending to another instance:

request = client.example_command(_instance_name='instance_2', param_1='example_param')

Request with a comment:

request = client.example_command(_comment='I'm a beer-garden comment!',
 param_1='example_param')

Without the leading underscore the arguments would be treated the same as param_1 -
another parameter to be passed to the plugin.

	Parameters

	
	host – beer-garden REST API hostname.

	port – beer-garden REST API port.

	system_name – The name of the system to use.

	version_constraint – The system version to use. Can be specific or ‘latest’.

	default_instance – The instance to use if not specified when creating a request.

	always_update – Should check for a newer System version before each request.

	timeout – Length of time to wait for a request to complete. ‘None’ means wait forever.

	max_delay – Maximum time to wait between checking the status of a created request.

	api_version – beer-garden API version.

	ssl_enabled – Flag indicating whether to use HTTPS when communicating with beer-garden.

	ca_cert – beer-garden REST API server CA certificate.

	blocking – Block after request creation until the request completes.

	max_concurrent – Maximum number of concurrent requests allowed.

	client_cert – The client certificate to use when making requests.

	url_prefix – beer-garden REST API URL Prefix.

	ca_verify – Flag indicating whether to verify server certificate when making a request.

	raise_on_error – Raises an error if the request ends in an error state.

	username – Username for Beergarden authentication

	password – Password for Beergarden authentication

	access_token – Access token for Beergarden authentication

	refresh_token – Refresh token for Beergarden authentication

	client_timeout – Max time to will wait for server response

	
create_bg_request(command_name, **kwargs)

	Create a callable that will execute a beer-garden request when called.

Normally you interact with the SystemClient by accessing attributes, but there could be
certain cases where you want to create a request without sending it.

Example:

client = SystemClient(host, port, 'system', blocking=False)
requests = []

No arguments
requests.append(client.create_bg_request('command_1'))

arg_1 will be passed as a parameter
requests.append(client.create_bg_request('command_2', arg_1='Hi!'))

futures = [request() for request in requests] # Calling creates and sends the request
concurrent.futures.wait(futures) # Wait for all the futures to complete

	Parameters

	
	command_name – The name of the command that will be sent.

	kwargs – Additional arguments to pass to send_bg_request.

	Raises

	AttributeError – The system does not have a command with the given command_name.

	Returns

	A partial that will create and execute a beer-garden request when called.

	
load_bg_system()

	Query beer-garden for a System definition

This method will make the query to beer-garden for a System matching the name and version
constraints specified during SystemClient instance creation.

If this method completes successfully the SystemClient will be ready to create and send
Requests.

	Raises

	FetchError – If unable to find a matching System

	Returns

	None

	
send_bg_request(**kwargs)

	Actually create a Request and send it to beer-garden

Note

This method is intended for advanced use only, mainly cases where you’re using the
SystemClient without a predefined System. It assumes that everything needed to
construct the request is being passed in kwargs. If this doesn’t sound like what you
want you should check out create_bg_request.

	Parameters

	kwargs – All necessary request parameters, including beer-garden internal parameters

	Raises

	ValidationError – If the Request creation failed validation on the server

	Returns

	If the SystemClient was created with blocking=True a completed request object,
otherwise a Future that will return the Request when it completes.

Module contents

	
brewtils.rest.normalize_url_prefix(url_prefix)

	Enforce a consistent URL representation

The normalized prefix will begin and end with ‘/’. If there is no prefix
the normalized form will be ‘/’.

Examples

INPUT NORMALIZED
None ‘/’
‘’ ‘/’
‘/’ ‘/’
‘example’ ‘/example/’
‘/example’ ‘/example/’
‘example/’ ‘/example/’
‘/example/’ ‘/example/’

	Parameters

	url_prefix (str) – The prefix

	Returns

	The normalized prefix

	Return type

	str

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Brewtils’s documentation!

 		
 Brewtils

 		
 Features

 		
 Installation

 		
 Quick Start

 		
 Documentation

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Brewtils

 		
 Features

 		
 Installation

 		
 Quick Start

 		
 Documentation

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Leads

 		
 Contributors

 		
 Brewtils Changelog

 		
 2.4.2

 		
 New Features

 		
 Bug Fixes

 		
 2.4.1

 		
 Other Changes

 		
 2.4.0

 		
 New Features

 		
 Other Changes

 		
 2.3.7

 		
 New Features

 		
 Bug Fixes

 		
 2.3.6

 		
 Other Changes

 		
 2.3.5

 		
 Bug Fixes

 		
 2.3.4

 		
 New Features

 		
 Other Changes

 		
 2.3.3

 		
 Bug Fixes

 		
 2.3.2

 		
 Bug Fixes

 		
 2.3.1

 		
 New Features

 		
 2.3.0

 		
 New Features

 		
 Bug Fixes

 		
 Other Changes

 		
 2.2.1

 		
 Bug Fixes

 		
 2.2.0

 		
 New Features

 		
 Bug Fixes

 		
 Other changes

 		
 2.1.1

 		
 New Features

 		
 Deprecations / Removals

 		
 Bug Fixes

 		
 Other changes

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

